Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.
نویسندگان
چکیده
Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy.
منابع مشابه
تأثیر تزریق داخل بطنی متفورمین بر یادگیری و حافظه فضایی موشهای آلزایمری مدل استرپتوزوسین
Background and objective: Insulin and its receptor are located in the central nervous system where it regulates many important processes such as neural proliferation, apoptosis, synaptic transmission, neuronal survival, synaptic plasticity, learning and memory. Alzheimer's disease (AD) is characterized by the accumulation of extracellular amyloid-β (Aβ) plaques, and intracellular aggregation of...
متن کاملsLRP1ng Up Glucose: LRP1 Regulates Hepatic Insulin Responses
The “metabolic syndrome” is composed of an inter-related group of risk factors including dyslipidemia, obesity, elevated blood pressure, fatty liver, and elevated blood glucose levels. A common feature in these conditions is the dysregulation of metabolic processes. In this issue of eBioMedicine, Joachim Herz and colleagues demonstrate that loss of the LDL Receptor-Related Protein (LRP1) in the...
متن کاملThe LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling
The metabolic syndrome is an escalating worldwide public health concern. Defined by a combination of physiological, metabolic, and biochemical factors, the metabolic syndrome is used as a clinical guideline to identify individuals with a higher risk for type 2 diabetes and cardiovascular disease. Although risk factors for type 2 diabetes and cardiovascular disease have been known for decades, t...
متن کاملLipoprotein Receptor LRP1 Regulates Leptin Signaling and Energy Homeostasis in the Adult Central Nervous System
Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype ch...
متن کاملCadm2 regulates body weight and energy homeostasis in mice.
OBJECTIVE Obesity is strongly linked to genes regulating neuronal signaling and function, implicating the central nervous system in the maintenance of body weight and energy metabolism. Genome-wide association studies identified significant associations between body mass index (BMI) and multiple loci near Cell adhesion molecule2 (CADM2), which encodes a mediator of synaptic signaling enriched i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 14 شماره
صفحات -
تاریخ انتشار 2015